2.1 Inductive Reasoning and Conjecture

> Conjecture -	educated guess based on Known	Mfo.
prediction.	heasoning that uses examples to arrive at a	

Example

Make a conjecture about the next number based on the pattern: 2, 4, 12, 48 48, 240

Example

Make a conjecture based on the information given. Draw a picture to represent your conjecture. Lines l and m are perpendicular.

Example

For points L, M, and N, LM = 20, MN = 6, and LN = 14. Make a conjecture and draw a figure to illustrate your conjecture.

> Counterexample - Shows false.

Example

Determine whether the following is true or false. If false provide a counterexample.

Given: It is the weekend.

Conjecture: It is Saturday.

False, it could be Sunday

Example

Determine whether the following is true or false. If false provide a counterexample.

Given: a and b are real numbers

Conjecture: ab > b

$$a=3$$
 $3 \cdot -7 > -7$ $b=-7$ $-21 > -7$

2.2 Logic > Statement - a sentence that is True or False, not both > Truth Value - the value the statement holds, T or F > Nearland a statement with opposite meaning and an opposite truth Example p: Lansing is a city in Michigan -p: Lansing is not a city in michigan F > Compound Statement - two Statements are joined P: Lansing is a city in Michigan. Q: Lansing is the capital of Michigan. Lansing is a city in Mich. and Lansing is the Eapital of michigan. Conjunction - a compound statement formed by using the word AND Symbol: p \ q *A conjunction is true only when both statement in it are true. Example Use the following compound statement for each conjunction then find its truth value. P: One foot is 14 inches. Q: September has 30 days. R: A plane is defined by three noncollinear points. @-par one foot is not 14 inches and TIT a plane is defined by 3 noncollinear pts.

> Disjunction a compound statement formed by the word or.
Symbol:
A disjunction is true when at least one of the statements is true.
Example Fig. 1. Continue of the continue of th
Use the following compound statements for the disjunction then find its truth
value. P: centimeters are metric units
P: centimeters are metric units
Q: 9 is a prime number
P VQ TOC
> Touth Tables used to help determine values of compound statements.
2.3 Conditional Statements
> Conditional Statement – a statement that can be written in if-then form.
If you want to graduate, then you have to pass Geometry.
Example Thypothesis conclusion
Identify the hypothesis and conclusion of each statement.
a) If a polygon has 6 sides, then it is a hexagon.
b) Tamika will advance to the next level of play if she completes the maze in her computer game.
Example Identify the hypothesis and conclusion of each statement. Then write each statement in the if-then form. a) Distance is positive If it is a distance then it is pos.
b) A five-sided polygon is a pentagon
IF 5-sided polygon, then it is a pentagon.

Conditional	p > g
Converse	8-3P
Inverse	かりかん
Contrapositiv	e nd-do

P	9	PV9
-	The state of the s	
7		
grante one	BEC.	

P	9	NP	~ PAQ	~ (~PAq
emple and	Managarines	I.		None business
and com	- Parent	E		-
F	WINDSON'S	1	1	
Total State of the	F	7		Militaria

P	9	~9	PV~9
- I	The		
T	F		
E	1		
Y.	Ċ		

	*	X		L
9	r	ng	NgAr	PV (~QAT)
-	3	Tall and	F	-
7		Service Control	Ė.	
	1	九 =		T
-	AND THE PARTY OF T	Y SI	F	1
and the same of	-		F	- Project
1	California Property	1 -	- 1	and the same of th
F	The same of the sa		F	Paris Control of the
100		1	E	L.
			£ 3.	F

¥.

Study Guide and Intervention

Deductive Reasoning

Law of Detachment Deductive reasoning is the process of using facts, rules, definitions, or properties to reach conclusions. One form of deductive reasoning that draws conclusions from a true conditional $p \to q$ and a true statement p is called the Law of Detachment.

Law of Detachment	If $p \rightarrow q$ is true and p is true, then q is true.
Symbols	$[(p \to q)] \land p] \to q$

Bramo 3 The statement If two angles are supplementary to the same angle, then they are congruent is a true conditional. Determine whether each conclusion is valid based on the given information. Explain your reasoning.

a. Given: $\angle A$ and $\angle C$ are supplementary to $\angle B$. Conclusion: $\angle A$ is congruent to $\angle C$.

The statement $\angle A$ and $\angle C$ are supplementary to $\angle B$ is the hypothesis of the conditional. Therefore, by the Law of Detachment, the conclusion is true.

b. Given: $\angle A$ is congruent to $\angle C$.

Conclusion: $\angle A$ and $\angle C$ are supplementary to $\angle B$.

The statement $\angle A$ is congruent to $\angle C$ is not the hypothesis of the conditional, so the Law of Detachment cannot be used. The conclusion is not valid.

EXPLOSES

Determine whether each conclusion is valid based on the true conditional given. If not, write invalid. Explain your reasoning.

- If two angles are complementary to the same angle, then the angles are congruent.
 - 1. Given: $\angle A$ and $\angle C$ are complementary to $\angle B$. \leftarrow hypothes is Conclusion: $\angle A$ is congruent to $\angle C$. \leftarrow Conclusion

2. Given: $\angle A \cong \angle C$

< conclusion Conclusion: $\angle A$ and $\angle C$ are complements of $\angle B$. \leftarrow hypoth.

Involid

3. Given: $\angle E$ and $\angle F$ are complementary to $\angle G$. **Conclusion:** $\angle E$ and $\angle F$ are vertical angles.

< hypoth.

	N	IAME			DATE	PERIOD	
7	A	Cturder	Cirida	- m d	Intomicantion		

Study Guide and Intervention (continued)

Deductive Reasonina

Law of Syllogism Another way to make a valid conclusion is to use the **Law of** Syllogism. It is similar to the Transitive Property.

Law of Syllogism	If $p \to q$ is true and $q \to r$ is true, then $p \to r$ is also true.
Symbols	$[(p \to q)] \land (q \to r)] \to (p \to r)$

fits a weekday, then you come to school.

Example The two conditional statements below are true. Use the Law of Syllogism to find a valid conclusion. State the conclusion.

- (1) If a number is a whole number, then the number is an integer.
- (2) If a number is an integer, then it is a rational number.
- p: A number is a whole number.
- q: A number is an integer.
- r: A number is a rational number.

If weekday, then go to The two conditional statements are $p \to q$ and $q \to r$. Using the Law of Syllogism, a valid conclusion is $p \to r$. A statement of $p \to r$ is "if a number is a whole number, then it is a rational number."

. If you come to. school, then you go to Geometry.

Exercises

Determine whether you can use the Law of Syllogism to reach a valid conclusion from each set of statements.

1. If a dog eats Superdog Dog Food, he will be happy. Rover is happy.

2. If an angle is supplementary to an obtuse angle, then it is acute. If an angle is acute, then its measure is less than 90.

If the measure of /A is less than 90 than /A is conto

3. If the measure of $\angle A$ is less than 90, then $\angle A$ is acute. If $\angle A$ is acute, then $\angle A \cong \angle B$.

If the measure of LA less than 90, then LA=LB

4. If an angle is a right angle, then the measure of the angle is 90. If two lines are perpendicular, then they form a right angle.

If I lines are perp., then measure of angle is 90.

5. If you study for the test, then you will receive a high grade. Your grade on the test is high.

2.5 Postulates and Paragraph Proofs

> Postulate - statement that is true and describes a basic geometric relationship

Example

Some snow crystals are shaped like regular hexagons. How many lines must be drawn to interconnect all vertices of a hexagonal snow crystal.

Postulates

- > Through any two points there is exactly one line
- > Through any three points not on the same line, there is exactly one plane,
- > A line contains at least 2 points
- > If two lines intersect, then their intersection is exactly 1 pont
- > If two planes intersect, then their intersection is a fine

Example

Always

Determine whether each statement is always, sometimes, or never true. Explain.

a) If plane T contains line EF and line EF contains point G, then plane T contains point G.

b) Line GH contains three noncollinear points

Never noncollinear means not on Sume > Proof-logical argument that shows a statement is true

Given:

ABEBC

Frove:

ABEBC

Sume

Line

Given

Given

Given

Frove:

ABEBC

Statement Ceason

Given

2-6

Study Guide and Intervention

Algebraic Proof

Algebraic Proof The following properties of algebra can be used to justify the steps when solving an algebraic equation.

Reflection

Property	Statement
Reflexive	For every number a , $a = a$. $3=3$. $5=5$
Symmetric	For all numbers a and b , if $a = b$ then $b = a$. $3 = x$ $x = 3$
Transitive	For all numbers a , b , and c , if $a = (b)$ and $(b) = c$ then $a = c$. $(x = (b)) = (b)$
+ + - Prop. of Egyp	Professional numbers a , b , and c , if $a = b$, then $a \div c = b + c$ and $a - c = b - c$.
Xd+ Prop of Egeo	For all numbers a , b , and c , if $a = b$ then $a \cdot c = b \cdot c$, and if $c \neq 0$ then $\frac{a}{c} = \frac{b}{c}$.
Substitution	For all numbers a and b , if $a = b$ then a may be replaced by b in any equation or expression.
Distributive	For all numbers a , b , and c , $a(b+c)=ab+ac$.

signing s

Solve 6x + 2(x - 1) = 30.

Algebraic Steps

$$6x + 2(x - 1) = 30$$

$$6x + 2x - 2 = 30$$
$$8x - 2 = 30$$

$$8x - 2 = 30$$
$$8x - 2 + 2 = 30 + 2$$

$$8x = 32$$

$$\frac{8x}{8} = \frac{32}{8}$$

x = 4

Properties

Given

Distributive Property

Substitution

Addition Property

Substitution

Division Property

Substitution

Given: 3x+4=25 Prove: x=7

Statement, Reason

6366,181.935

Complete each proof.

1. Given: $\frac{4x + 6}{2} = 9$ Prove: x = 3

b. $2\left(\frac{4x+6}{2}\right) = 2(9)$ c. $4x+6=18$ d. $4x+6-6=18-6$ e. $4x=\frac{1}{2}$	a.	<u>4x</u>	+ (3 =	9			
d. $4x + 6 - 6 = 18 - 6$ e. $4x = \frac{1}{2}$	b.,	2	- 4x - 2	÷ 6) =	2(9))	
10					Name of the last o	= 18	-	6
f. $\frac{4x}{4} = \frac{1}{4}$			-		19			_

Reasons

a. Given

b. Mult. Prop.

c. Substitution

a. Subtration

e. Substitution

f. Div. Prop.

g. Substitution

2. Given: 4x + 8 = x + 2Prove: x = -2

Statements Reasons

 $\frac{4x + 8}{4x + 8} = x + 2$ a. General examples and the example of the example o

b. $\frac{4x + 8 - x}{x + 2 - x} =$

c. 3x + 8 = 2

d.3x+8-8=2-8

e. 3x = -6

g. X --7

a Given

b. Subtraction

c. Substitution

d. Subtr. Prop.

e. Substitution (Simplify)

f. Division

g. Substitution

Study Guide and Intervention (continued)

Algebraic Proof

Geometric Proof Geometry deals with numbers as measures, so geometric proofs use properties of numbers. Here are some of the algebraic properties used in proofs.

Property	Segments	Angles
Reflexive	AB = AB	$m \angle A = m \angle A$
Symmetric	AB= CD Hen CD= AB	If $m \angle A = m \angle B$, then $m \angle B = m \angle A$.
Transitive	ABY CD and CBY EF	If $m \angle 1 = m \angle 2$ and $m \angle 2 = m \angle 3$, then $m \angle 1 = m \angle 3$.

Write a two-column proof.

Given: $m \angle 1 = m \angle 2$, $m \angle 2 = m \angle 3$

Prove: $m \angle 1 = m \angle 3$

Proof:

Statements	Reasons
$1. m \angle 1 = m \angle 2$	1. Given
2. $m \angle 2 = m \angle 3$	2. Given
3 m/1 = m/3	3 Transitive Property

一多的方法

State the property that justifies each statement.

- 1. If $m \angle 1 \neq m \angle 2$, then $m \angle 2 = m \angle 1$. Symmetric
- 2. If $m \ge 90$ and $m \ge 2$, = $m \ge 1$, then $m \ge 2 = 90$. Then $m \ge 2 = 90$. Then $m \ge 1$ is $m \ge 1$.
- 3. If AB = RS and RS = WY, then AB = WY. Thans. / Sub.
- 4. If AB = CD, then $\frac{1}{2}AB = \frac{1}{2}CD$. MOH.
- 5. If $m \angle 1 + (m \angle 2) = 110$ and $m \angle 2 = m \angle 3$, then $m \angle 1 + (m \angle 3) = 110$. Sub o
- 7. If AB = RS and TU = WY, then AB + TU = RS + WY. Addition
- Trans./Sub 8. If $m \angle 1 = (m \angle 2')$ and $(m \angle 2) = m \angle 3$, then $m \angle 1 = m \angle 3$.
- 9. A formula for the area of a triangle is $A = \frac{1}{9}bh$. Prove that bh is equal to 2 times the area of the triangle. A=Yzbh

Statement Keason 2)20A=2(/2bh)| MUIt.

Proving Segment Relationships

Given: 3x+4=16

Prove: x=4

Statements	Reasons	
3x + 4 = 16	6.	
3× + 12		
× = 4		

Now we'll add postulates, and use segments in addition to numbers and variables.

- -Segment Addition Postulate: AB+BC=AC
- -Between any two points there can be only one line.
- -The congruence of segments is reflexive, symmetric, and transitive.

Example:

Given: AB=BC, C is the midpoint of BD

Prove: AB=CD

Statements	Reasons	
AB=BC		
BC=CD	1	
AB=CD	·	

Practice these proofs.

Study Guide and Intervention

Proving Segment Relationships

Segment Addition Two basic postulates for working with segments and lengths are the Ruler Postulate, which establishes number lines, and the Segment Addition Postulate, which describes what it means for one point to be between two other points.

· ~.		The points on any line or line segment can be paired with real numbers so that, given any two points A and B on a line, A corresponds to zero and B corresponds to a positive real number.
- * 8 *	. 1	B is between A and C if and only if $AB \div BC = AC$.

Write a two-column proof.

Given: Q is the midpoint of \overline{PR} . R is the midpoint of \overline{QS} .

Prove: PR = QS

Statements	Reasons	
1. Q is the midpoint of \overline{PR} .	1. Given	
2. PQ = QR	2. Definition of midpoint	
3. R is the midpoint of \overline{QS} .	3. Given	
4. QR = RS	4. Definition of midpoint	
5. PQ + QR = QR + RS	5. Addition Property	
6. PQ + QR = PR, QR + RS = QS	6. Segment Addition Postulate	
7. PR = QS	7. Substitution	

Complete each proof.

1. Given:
$$BC = DE$$

Prove: $AB + DE = AC$

Statements	Reasons	
a.BC = DE	a	
b	b. Seg. Add. Post.	
c.AB + DE = AC	с.	

Prove: PQ = RS

Statements	Reasons
a. Q is between P and R .	a. Given
b.PQ + QR = PR	b
c. R is between Q and S .	С.
d.	d. Seg. Add. Post.
e.PR = QS	e
f. PQ + QR = QR + RS	f
g.PQ + QR - QR = QR + RS - QR	g
h.	h. Substitution

Study Guide and Intervention

Proving Angle Relationships

Supplementary and Complementary Angles There are two basic postulates for working with angles. The Protractor Postulate assigns numbers to angle measures, and the Angle Addition Postulate relates parts of an angle to the whole angle.

Postulate	Given \overrightarrow{AB} and a number r between 0 and 180, there is exactly one ray with endpoint A , extending on either side of \overrightarrow{AB} , such that the measure of the angle formed is r .
Angle Addition Postulate	R is in the interior of $\angle PQS$ if and only if $m\angle PQR + m\angle RQS = m\angle PQS$.

The two postulates can be used to prove the following two theorems.

Theorem	If two angles form a linear pair, then they are supplementary angles. If $\angle 1$ and $\angle 2$ form a linear pair, then $m\angle 1 \div m\angle 2 = 180$.	D 1 2 A B C
Theorem	If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles. If $\overrightarrow{GF} \perp \overrightarrow{GH}$, then $m \angle 3 + m \angle 4 = 90$.	$G \xrightarrow{3} 4 H$

If $\angle 1$ and $\angle 2$ form a linear pair and $m \angle 2 = 115$, find $m \angle 1$.

 $m \angle 1 + m \angle 2 = 180$ Suppl. Theorem

 $m \angle 1 + 115 = 180$ Substitution

 $m \angle 1 = 65$ Subtraction Prop.

If $\angle 1$ and $\angle 2$ form a right angle and $m\angle 2 = 20$, find $m\angle 1$.

 $m \angle 1 + m \angle 2 = 90$ Compl. Theorem

 $m \angle 1 + 20 = 90$

Substitution

 $m \angle 1 = 70$ Subtraction Prop.

Find the measure of each numbered angle.

1.

 $m \angle 7 = 5x + 5$, $m \angle 8 = x - 5$

 $m \angle 5 = 5x, m \angle 6 = 4x + 6,$

 $m \angle 7 = 10x$,

 $m \angle 8 = 12x - 12$

 $m \angle 11 = 11x$,

 $m \angle 12 = 10x + 10$

	DATE	PERIOD
NAME	DAIE	PENIUD
I AL CIVIL		

2-8

Study Guide and Intervention (continued)

Proving Angle Relationships

Congruent and Right Angles Three properties of angles can be proved as theorem

Gongruence of angles is reflexive, symmetric, and transitive.

Angles supplementary to the same angle or to congruent angles are congruent.

If $\angle 1$ and $\angle 2$ are supplementary to $\angle 3$, then $\angle 1 \cong \angle 2$.

Angles complementary to the same angle or to congruent angles are congruent.

If $\angle 4$ and $\angle 5$ are complementary to $\angle 6$, then $\angle 4 \cong \angle 5$.

- Skample

Write a two-column proof.

Given: $\angle ABC$ and $\angle CBD$ are complementary. $\angle DBE$ and $\angle CBD$ form a right angle.

Prove: $\angle ABC \cong \angle DBE$

Statements

- 1. $\angle ABC$ and $\angle CBD$ are complementary. $\angle DBE$ and $\angle CBD$ form a right angle.
- 2. $\angle DBE$ and $\angle CBD$ are complementary.
- $3. \angle ABC \cong \angle DBE$

Reasons

- 1. Given
- 2. Complement Theorem
- 3. Angles complementary to the same ∠ are

Complete each proof.

1. Given: $\overline{AB} \perp \overline{BC}$; $\angle 1$ and $\angle 3$ are complementary.

Prove: $\angle 2 \cong \angle 3$

 $g. \angle 2 \cong \angle 3$

2. Given: $\angle 1$ and $\angle 2$ form a linear pair. $m \angle 1 + m \angle 3 = 180$

Prove: $\angle 2 \cong \angle 3$

Statements	Reasons
a. $\overline{AB} \perp \overline{BC}$ b	a b. Definition of \perp
c. $m \angle 1 + m \angle 2 = m \angle ABC$	с.
d. $\angle 1$ and $\angle 2$ form a rt \angle .	d
e. ∠1 and ∠2 are compl.	e
f	f. Given