Chapter 3 Transcendental Functions
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3 1 Exnonentlal and Lngistlc Functlons

» Exponential Functlon 'O\a bx

v
AN

N |
. . (’yvo\}ﬁ)\\ ‘? LT
' ‘\?2& 0F O D?_Cmé Lokl

o Exponential Growth - b> k

o Exponential Decay - Z l
O <L b4

Examples

Determine the formulas for the exponential functions whose values are given below.
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Desctibe how to transform the graph of f(x) = 3% into the graph of the given function.

Sketch the graphs by hand and support your answer with a grapher,

() gx) = 32 (b) h(x) = 3. @ =2+ 5"
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Describe how to transform f(x) = e* into the graph of the given function. Sketch the graphs
by hand and support your answer with a grapher.

a) glx) = ¢2x bYh{x) =e ¥ ¢) k(x) = 3e*
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Example

Graph the function. Find the y-intercept and the horizclr;tal asymptotes.
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Based on recent data, a logistic model for the population of Dallas, t years after 1900 is as
follows: o

b = L30%, 642
1+ 21.602¢-005054

According to the model, when was the population 1 million?
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3.2 Exponential and Logistic Modeling ﬁ'
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Example

Tell whether the function is exponential growth or decay and find the constant percentage rate of
growth or decay.

&) P(D) =35 109" Gfow\u/\ ‘ 9%

b) f(x)—78963 0.9680% DQLQ% @@33 2%
) h() = 4783-132% G{DUQ\{——Q\ 3790

Example

Suppose a culture of 200 bacteria is put into a petri dish and the culture doubles every hour.
Predict when the number of bacteria will be 250,000.
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Suppose the half-life of a certain radioactive substance is 24 days and there are 10 grams present
initially. Find the time when there will be 2 grams of the substance remaining.

) vy Yy 4= hime dn days
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Example

Jonesdale High School has 630 students. T osh, Mia, Tim, and Briana start a rumor. Which
spreads logistically so that s(t) = 630/(1 + 29 e~ 98t models the number of students who
have heard the rumor by the end of t days where t=0 is the day the rumor begins to spread.

_"@Q/ a) How many students have heard the rumor by the end of Day 07

~b 30 _ 30 -
W€ 2R = 28 Rl ¢

b) How long does it take for 500 students to hear the rumor?
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3.3 Logarithmic Functions and Their Graphs =31
b= Ag’ -
> Logarithmic and Exponential Form b = - y=log, r’
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Example

Evaluate each expression.
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Basic Properties of Logarithms

For 0 <b# L x> 0. and any real number .
log,1=0 because b’ =1.
log,b=1 because b’ =b.

log, b* =y because b" =",

- X
P =y because log, x = log, x. k \C_')Sb - L®%b

Properties of Common Logarithms

Letxy and » be real numbers with x > 0.
logl =0 because 10° = |.
logl0 =1 because 10! = 10.
log10” = y because 10" = 10",

IISIGY‘—\ because logx = log x. é/ ‘OS) X < /O(J X




Properties of Natural Logarithms

Let x and ¥ be real numbers with x> 0.
fnl= 0 because ¢” =1.
fne =1 because ¢’ = e.
Ine' =y because e =", P

2" = x because lnxv=Inx.

Example

Evaluate the expressions,
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Deseribe transformations that will transform f{x)=Inx C, XB (\e%\ (j
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Example

Describe how to transform the graph of y =Inxory = log x into the graph of the given

function.
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> Decibels - 17 r:!zbﬁ )
The level of sound intensity in decibels (dB) is &‘)\)f\ C\\{\%ﬁg’%
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where f (beta) is the number of decibels, ' j \0"124
Iis the sound intensity in W/m*, and

: \
I, 0 = ~ 107" W/m® is the threshold of human [ 0 [O' ‘/\,@ ‘
hearing (the quietest audible sound intensity). (10
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- 3.4 Properties of Logarithmic Functions

Let b, R, and S be positve real numbers with b # 1,

and ¢ any real number.

| L AY - M
‘Product rule: log, (RS) = log, R +log, OX @ O\g - O l{)
Quotientrule:  log, ( %] = log, R —log, 5 OKX/OL% pe O\x ) lj
Power rule: log, (R)* = clog, R \ ( O\ ¥ )Lﬁ - O&mﬁ

Example
!

" Assuming x and y are positive, use pfopertles of loganthms to write log (16x"°y asa ~
sum of lo ganthms or multiples of logarithms.
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Assuming x is positive, use properties of logarithms to write In

as a sum of

difference of logarithms or multiples of Jogarithms.
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Neyrd- fé
WM - \f\\;%

\xd
X5y3

| T
% > ChangeofBasemeula “@UC{DSQJ \S e C){\C{j\ @% SC)
N S @ i ‘mﬁz

iOOL ! o Jod 4 looex
e \ogﬁx A | s
\ L—{"* = Iy &"‘7 f (‘z(}g l
( Y ind=In . 5 s
Example VL= In h7 w \ SRR T e ) <0
Describe how t'*transfé‘nn fhe graph of f (x) In x into the graph of the given function. - ) !0% ( ) O
\\ Sketch the graph by hand and support your answi er with a grapher. ‘
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( | The relatlonshlp between intensity I of light (in lumens) at a depth of x feet in Lake Erie is given
by Iog— = - 0023 5x. What is the intensity at a depth of 40 feet? _ T - Oq’ L {
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_ __3.5Eqguation Solving and Modeling . _ ___ _ . I —— L

Sometimes logarithmic equations can be solved by changing to exponential form.
For any exponential function f(x)= 5",
I p=h", thenu =v
For any logarithmic function f(x) = log, x.

Tt log, # = log, v, then i =v:

r% Example

g{( : Solve 27@[.3) H=12, Solve log x4=4. "~

2%

Ngie: When you solve logarithmic equations be to keep track of the domain!
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Example — Real World

A hard-boiled egg at temperature 97°C is placed in 17°C water to cool. Three minurtes
later the temperature of the egg is 48°C, Use Newton’s Law of Cooling to determine

when the ege will be 20°C. -3
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» Logarithmic Re-expression
1. Natural Logarithmic Regression Re-expressed: (x, y}—={n x,

> k. |

- n - Conclusion:

regression model for the
{x, ¥) data,

i
{0, 2) by [0, 30]

(Inx, y) ={n, ¥} data with
linear regression mmodel
y=au+h

¢b)

[0, 71 by 10, 20]
(x, ¥} data
(a)

B

. Exponential Regression Re-expressed: (x, y)—(x, In )

Cenclusion:
y=old™), where c= &

T T T T ¥ T [3

regeession model for the
{x, ) datn
= L
u

[0, 7] by {0, 75] {0, 7k by [0, 5
(z, ¥y data (% 1n ¥y ={x, v} data with
@) tinear regression maodel
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3. Power Regression Re-expressed: (%, y)={nx, Iny)

/ Concluston:
L !

/ r=cl¥D), wherec= e,

is the power regression
= b

u
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[0, 7] by [0, 50] [0, 21 by [-5, 5] -,
{x, y}data tinx, 10 ) = {x, y) data with
{a) lingar regression mode}

v=g+b
[{}]

y=alnx+bijsthe logarithmic

made] for the (x, y) data.
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log = Rk

and d = ¢, is the exponential
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36 Mathematics of Finance

ompounded Interes —7 7;\&?{( ZE]
> C ded Interest lﬂ&Eﬁf(ﬁ}ﬂQ>Jh%ﬂﬁSéf l[f He
Example e OM

Paul invests $500 at 7% compounded annually. Find the value of his investment 10 yeals later, ﬂf’lf{ dg

e Jivasd

Robert invests $500 at 9% annual interest compounded monthly. Find the value of his .

investment 5 years later. \7_(53

How long will it take for

Mazie has $600 to invest at 8% annual interest compounded monthly.

her jnvestment to grow to $2400? 7 &
,—% Y= a0

2000 = (00 (1+

4= 006 “°
o= g ook (1T O8NS

Steven has $500 to invest. What annual interest rate compounded quarterly is required to double

his money is 10 years? | 560 = <SDO 0 N }L\( 10Y GFO{)h
(6,415 ) [-500, 500
«O0Y
)
» Compounded Continuously — CO ‘ q%)
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Example

Suppose Moesha invests $200 at 7% annual interest compounded continuously. Find the
value of her investment at the end of each of the years 1,2,..., 7
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» Annual Percentage Yield (APY) —
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Example

Janet invests $2000 with Crab Key Bank at 5.15% annual interest compounded quarterly. What

is the equivalent APY? &@60()4’ poﬂs 314{ - ZO/OO(}+XS
1, 0525 [+x
> Annuity ~ 6%/[)0\/0\ @Qﬂ\ \C‘ @W‘LS
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Example

At the end of each quarter year, Emile makes a $400 payment into the Smithville

Financial Fund. Ifhis investments earn 7.75% annual interest compounded quarterly,
what will be the value of Emile's annu1ty in 25 years?

+TY i’\wl _
V= @\ ‘ Krzqu
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Carlos purchases a pickup truck for $18,500. What are the monthly payments for a 4-year loan
with a $2000 down payment if the annual interest rate is 2.9%% / bt{e i7
. 0 )
- R (J(o?ff{:zﬁqg +
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I8ST0O-2000 | UK
| V= (1 .09 [Véd\
1S00= R _‘B‘gq—ﬁ{’"‘“”'

A8
esool el = R |~ (1.0 )
34,878 - R o, 109 | (U}




