Key

10.1 Circles and Circumference

Circles are named using the center of the circle

Chord – any segment with endpoints that are on the circle

Diameter – a chord that passes through the center

Radius – any segment with endpoints that are the center and a point on the circle

Example

- a. Name the circle Carde E
- b. Name a radius of the circle EC EA ED BE
- c. Name a chord of the circle AB AD AC BD
- d. Name a diameter of the circle AD AC

Circumference – the distance around a circle 2410 or dy

Example

Find the exact circumference of circle K.

5.24 =10M

10.2 Angles and Arcs

> Central Angle - angle with center as the vertex. The central control

Example

 360° 8x-4+13x-3+5x+5=180 26x-2=180 26x=182x=7

AB

AB

- a) find $m \angle RTS$ 52°
- b) find $m \angle QTR$. 40°

• Arc – a part of a circle defined by two endpoints

Minor Arc – same measure as central angle, less than 80° (denoted with two variables)

> Semicircle - 180°

- > Theorem In the same or in congruent circles, two arcs are congruent iff their corresponding Central angles congruent
- > Arc Addition Postulate the measure of an arc formed by two adjacent arcs is the Sum of the measures of the two arcs.

Example In circle P, $m \angle NPM = 46$, \overline{PL} bisects $\angle KPM$ and

 $\overline{OP} \perp \overline{KN}$.

Find the measure of:

- a) arc OK 90°
- b) arc LM 67
- c) are JKO 316

Example

Find the measurement of the central angle representing each category. List them from least to greatest.

Comfort mountain 37% 133.2

Youth other

Bicycles Bought In 2001 (by type)

Other 25.2° 1 Hybrid 32.4 Comfort 75.6 1 Youth 93.6 Mount. 133.2°

25.2+75.6 +93.6

Is the arc for the wedge named YOUTH congruent to the arc for the combines wedges named OTHER and COMFORT?

Arc Length

L =

Degree of Arc
360

X

Circumference

Example

Given that $\underline{AC} = 9$ and the measure of angle ABD = 40. Find the length of arc AD.

40 · 941 360

C

C=941

10.3 Arcs and Chords

> Arc - minor 2 part of circle (* B)
> Chord - segment w/ enapts on circle
> Theorem - in a circle two minor arc are congruent if and only if

Circumscribed

X= 40

inscribed

Findm AB

Examples

Each regular polygon is inscribed in a circle. Determine the measure of each arc that corresponds to the side of the polygon.

1) octagon

10.3 Day 2

> Theorem - In a circle, if a diameter (or radius) is perpendicular to a chord, then chords will be bisected

> Theorem - In a circle or in congruent circles, two chords are congruent iff they are same clist from center

Examples

In $\bigcirc P$, CD = 24 and $\widehat{mCY} = 45$. Find each measure.

- 1. AQ 17
- 2. RC 12
- 3. QB \7

- 4. AB 24
- 5. mDY 450
- 6. mAB 90°

- 7. mAX 45°
- 8. mXB US
- 9. mCD 90

In $\bigcirc G$, DG = GU and AC = RT. Find each measure.

- 10. TU 4
- 11. TR
- 12. mTS \$3.

- 13. CD
- 14. GD 7
- 15. mAB \$3.

16. A chord of a circle 20 inches long is 24 inches from the center of a circle. Find the length of the radius.

10.4 Inscribed Angles

- · Vertex on circle
- · Sides Chords

> Inscribed Angle Theorem -

Example

Find the measure of the numbered angles given the following:

> Theorem - If two inscribed angles of a circle intercept congruent arcs of the same arc, then the angles are congruent.

Use $\bigcirc P$ for Exercises 1–10. In $\bigcirc P$, $\overline{RS} \parallel \overline{TV}$ and $\overline{RT} \cong \overline{SV}$.

1. Name the intercepted arc for $\angle RTS$.

2. Name an inscribed angle that intercepts \widehat{SV} .

In $\bigcirc P$, $\widehat{mSV} = 120$ and $m \angle RPS = 76$. Find each measure.

3. m∠PRS 512

4. $m\widehat{RSV}$

196

5. mRT 170°

6. m∠RVT 60°

8. *m*∠STV (00°

10.4 Inscribed Angles (Day 2)

> Theorem - if an inscribed angle intercepts a semicircle, the angle is a 90° angle.

> Theorem - if a quadrilateral is inscribed in a circle, then its?

opposite angles are Supplementary

Triangle TVU and TSU are inscribed in
$$\ThetaP_g$$
 $VO = SO$. Find the numbered angles if $mL2 = x+9$ and $mL4 = 2x+6$

$$3x+15+90=180$$

 $3x+105=180$
 $3x=75$
 $x=25$

Study Guide and Intervention (continued)

Inscribed Angles

Angles of Inscribed Polygons An inscribed polygon is one whose sides are chords of a circle and whose vertices are points on the circle. Inscribed polygons have several properties.

- If an angle of an inscribed polygon intercepts a semicircle, the angle is a right angle.
- If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

If \overrightarrow{BCD} is a semicircle, then $m \angle BCD = 90$.

For inscribed guadrilateral ABCD, $m\angle A + m\angle C = 180$ and $m \angle ABC + m \angle ADC = 180.$

In $\bigcirc R$ above, BC = 3 and BD = 5. Find each measure.

a. *m*∠*C*

 $\angle C$ intercepts a semicircle. Therefore $\angle C$ is a right angle and $m \angle C = 90$.

b. CD

 $\triangle BCD$ is a right triangle, so use the Pythagorean Theorem to find CD.

$$(CD)^2 + (BC)^2 = (BD)^2$$

 $(CD)^2 + 3^2 = 5^2$
 $(CD)^2 = 25 - 9$
 $(CD)^2 = 16$

CD = 4

इस्कारांडक्ड

Find the measure of each angle or segment for each figure.

1. $m \angle X$, $m \angle Y$

5.AB,AC

 $6, m \angle 1, m \angle 2$

10.5 Tangents

point.

Theorem – If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.

Theorem - If a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle.

Theorem - If two segments from the same exterior point are tangent to a circle, then they are congruent

· <u>Circumscribed Polygons</u> - polygons

where every side

is target to circle

Study Guide and Intervention (continued)

Exercises

Find x. Assume that segments that appear to be tangent are tangent.

3.

302+402=(30+x

Find x. Assume that segments that appear to be tangent are tangent.

3. square

6.

10.6 Secants, Tangents, and Angle Measures

Secant – a line that intersects a circle in EXACTLY points

Theorem – if two secants intersect in the interior of a circle, then the measure of an angle formed is $\frac{1}{2}$ Sum of the measure of the arc intercepted by the angle and its

• Theorem – if a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is one-half the measure of its intersected arc

 $1, m \angle 1$

 $4. m \angle 4$

@ Glencoe/McGraw-Hill

ec

Find each measure.

2. $m \angle 2$ Sec

3. $m \angle 3$ 100°

1/2 (97+0)

5. $m \angle 5$ 6. $m \angle 6$ 130°

Sec

160°

TO

Glericoe Geometry

10.6 Secants, Tangents, and Angle Measures (Day 2)

Two Secants

$$m \angle A = \frac{1}{2} (mDE - mBC)$$

$$\frac{1}{2} (120 - 20)$$

$$\frac{1}{2} (100)$$

Secant-Tangent

$$m\angle A = \frac{1}{2}(mDC - mBC)$$

$$175 - 75.$$

$$12 \cdot 100$$

$$50$$

Two Tangents

$$m\angle A = \frac{1}{2}(mBDC - mBC)$$

$$760 - 100$$

$$72.160$$

Find each measure.

 $1. m \angle 1$

3. *m*∠3

 $2. m \angle 2$

10.7 Special Segments in Circles

Segments that Intersect Inside a Circle:

Example

Biologists often examine organisms under microscopes. The circle represents the field of view under the microscope with a diameter of 2 mm. Determine the length of the organism if it is located .25 mm from the bottom of the field of view. Round to the nearest hundredth.

25mm

10.75° 25 = X° X V= 66mm

10.7 Segments Intersecting Outside a Circle

<u>Theorem</u> – If two secants are drawn from an exterior point, the product of the exterior part and the whole segment for each secant

equals one another.

Theorem – If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent is equal to the product of the secant segment and its external secant segment.

10.8 Equations of Circles

An equation for a circle with center at (h, k) and a radius of r

units is $(x-h)^2 + (y-k)^2 = r^2$ Modius

Example

Write an equation for each circle:

center at (3, -3), d=12 $\Gamma = \omega$ $(x-3)^{2}+(y-3)^{2}=6^{2}$ $(x-3)^2 + (y+3)^2 = 36$

9+25 = \34

b) center at (-12, -1),
$$r = 8$$

$$(x-12)^{2}+(y-1)^{2}=8$$

$$(x+12)^{2}+(y+1)^{2}=64$$

Example

C= 5 A circle with a diameter of 10 has its center in the first quadrant. The lines y = -3 and x = -1 are tangent to the circle.

10-8 Study Guide and Intervention (continued)

Equations of Circles

Graph Circles If you are given an equation of a circle, you can find information to help you graph the circle.

Example Graph $(x+3)^2 + (y-1)^2 = 9$.

Use the parts of the equation to find (h, k) and r.

$$(x - h)^2 + (y - k)^2 = r^2$$

$$(x-h)^2 = (x+3)^2$$

$$h = -3$$

$$(x - h)^2 = (x + 3)^2$$
 $(y - h)^2 = (y - 1)^2$

$$y - k = y - 1$$

$$k = 1$$

The center is at (-3, 1) and the radius is 3. Graph the center. Use a compass set at a radius of 3 grid squares to draw the circle.

Exercises

Graph each equation. 16 = 4

$$1. x^2 + y^2 = 16$$

$$3. (x + 2)^2 + y^2 = 16$$

4.
$$(x + 1)^2 + (y - 2)^2 = 6.25$$

5.
$$\left(x + \frac{1}{2}\right)^2 + \left(y - \frac{1}{4}\right)^2 = 4$$

$$6. x^2 + (y - 1)^2 = 9$$

